
www.manaraa.com

Evaluated Object-Oriented Software Development

Reiner R. Dumke and Erik Foltin

University of Magdeburg,
Postfach 4120, D-39016 Magdeburg,

Germany

E-mail: {dumke,foltin}@irb.cs.uni-magdeburg.de
Fax: +49-391-67-12810

ABSTRACT: This paper describes the
fundamental ideas of our present project -
the Software Measurement Laboratory - as
a method of metrication of the object-
oriented software development. The
underlying measurement framework starts
at the first step of the software development
(the problem definition) and measures the
metric mutations in the object-oriented
paradigm of Coad/Yourdon and the
implementation in Smalltalk and C++. The
object-oriented software development was
described with development indicators.

KEY WORDS: software measurement,
object-oriented software development,
software quality assurance

1. Introduction

The use of a new software development
paradigm in general starts with a lot of
persuasive (but not proved) hypotheses.
Therefore, from the software engineering
point of view the goal of the measured
object-oriented software development
(OOSE) can be characterized as:
1. the understanding of the special

development method or paradigm,
2. the measurement based method

comparison, and the controlled software
development process in the manner of
the Capability Maturity Model of the
Carnegie Mellon University in
Pittsburgh.

 The recent works in software measurement
for object-oriented software development

 can be shortly characterized as
• statistical analysis by Rocache
/Rocache 89/ of elements of an object-
oriented development system (Smalltalk-
80), or by Szabo and Khoshgoftaar of a
C++ communication system (/Szabo et al
95/),
• metrics set definitions by Abreu /Abreu
et al 94/ for C++ with the two vectors the
category (design, size, complexity, reuse,
productivity, and quality), the granularity
(system, class, and method), by Binder
/Binder 94/ in a set of C++ metrics to
measure the encapsulation, the inheritance,
the polymorphism and the complexity, by
Arora et al for the real-time software design
in C++ (/Arora et al 95/), and by Lorenz as
a metrics set that can be used for both lan-
guages (C++ and Smalltalk, /Lorenz 93/),
• metrics for aspect measurement by Ott
et al of the class cohesion (/Ott et al. 95/),
or by Bieman or John of the reuseability
(/Karunanithi et al 93/, /John et al 95/), and
by Lejter of the maintenance (/Lejter et al
92/),
• information theoretical approaches in
the measure of the conceptual entropy by
Dvorak /Dvorak 94/ or in the cognitive
approach by Henderson-Sellers et al /Cant
et al 94/ with the landscape idea along the
method routes or the learnability aspects in
the use of class libraries (/Lee et al 94/),
and

www.manaraa.com

• validation of enclosed approaches by Chidamber and Kemerer /Chidamber et al

software develop- measurement theoretical view evaluation (empi-
ment component model (statistical analysis) model rical) criteria

 scale scale
design documents flow graph ESTIMATION goal tree cost

drawings call graph factor-criteria effort
 tree
charts text schemata CALIBRATION grade
 cause and effect
source code structure tree diagram quality

test tables code schemata CORRELATION GQM paradigm actuality

etc. etc. etc. etc.

 abstraction metrication VALIDATION metrication abstraction
 (tool-based) (expert’s report)

 94/ as an apporach of a metrics definition
based on a measurement theoretical view
(with a viewpoint as empirical attribute),
the extensions of these measures by Li et al
(/Li et al 95/), the analysis of Churcher and
Shepperd (/Churcher et al 95/), and the
investigations of Zuse (/Zuse 94/).
 These and the other concepts are first
steps in a global measurement approach for
the object-oriented software development
and are missing (see also /Jones 94/) the
evaluation of the continuity of the object-
oriented software development process: the
object-oriented analysis (OOA) ⇒ object-
oriented design (OOD) ⇒ object-oriented
programming (OOP) and the possibility of
the reverse process (!).

2. The OOSE Measurement
Framework

2.1. The general approach

The principal ideas of this measurement
framework are given in /Dumke et al 94/
and are related to the object-orientation to
understand and to quantify the chosen

method. A standardized metric set for
OOSE does not exist (only a metrics
definition standard /IEEE 93/). Therefore, it
is necessary to define metrics and to
analyse them. The validation problem is the
main problem in the application of software
metrics (see the figure above). The software
measurement is directed to the three main
components in the (object-oriented)
software development (see also /Fenton
91/)

• the process measurement for under-
standing, evaluation and improve-
ment the development method,

• the product measurement for the
quantification of the product
(quality) characteristics and vali-
dation of these measures,

• the resource measurement for
evaluate the support (CASE tools,
measurement tools etc.) and the
chosen implementation system.

Some main ideas and some short results of
an application on the Software Measure-
ment Laboratory of the University of
Magdeburg (SMLAB) are given in the
following (see also in the WWW in

www.manaraa.com

http://irb.cs.uni-magdeburg.de/
se/metrics_eng.html).

2.2. The Process Measurement

The chosen OOSE method is the
Coad/Yourdon approach (described in
/Coad et al 93/) and begins with the
transformation of the problem definition in
a graphical representation with an
underlying documentation. The
documentation stores all information that
cannot be presented in the drawing. The
drawings (also possible in some variants)
and the documentation constitute the OOA
model. In a first evaluation of this method
we can establish as goals of the process
measurement and the realized activities:

 How can we measure the object
definition process? This question leads us
to the first step of the software development
- the problem statement. We need a
computational stored problem definition to
measure the object definition. The SMLAB
problem definition must be presented for all
members of the software engineering team

 and the document itself is an essential
source for many outputs such as milestones
in the different investigations, overview for
some administrations. Therefore, we
decided to use a local net html file set of
the World-Wide Web as a living document

system. The elements of our problem
statement are a
• list of contents as

− problem description,
− constraints,
− given situation,
− functional requirements,
− management requirements (control-

ling and quality) and a
• list of components as

− notions, names,
− dates,
− pictures, and
− (hypertext) relations.

 The process measures for the problem

definition are (in a first step)

• the number of notions, names or titles,
• the number of dates (times and events).

 The measure mutation was analysed, for
example in the problem definition
(#notions/names) to the number of the class
definitions in the model and in the
implementation. Further measurements are
related to the adjectives/predicates into the
class attributes or variables, verbs/adverbs
into the class services or methods and
dates/constraints into the model documen-
tation and implementation.

 We can establish the relation of 4600

notions (names or titles) into 76 object
classes. Note, that a lot of notions in the
problem definition are instances of the de-
fined classes. So, we get the specification
indicators as

 class definition indicator (CDI) as
 number of notions
 number of defined classes

 attribute definition indicator (ADI) as
 number of adjectives or predicates
 number of defined attributes

www.manaraa.com

 service definition indicator (SDI) as
 number of verbs or adverbs
 number of defined services

Our project has the indicator values:

 CDI ≈ 0,02,
 ADI ≈ 0,03,
 SDI ≈ 0,06.

How can we measure the OOA/OOD
model itself? The main steps in the object-
oriented analysis are
1. Finding classes and objects,
2. Identifying structures (class structure

(Gen-Spec) and Whole-Part structure),
3. Identifying subjects (as ̀ `view’’ of the

class structure defined in framed
areas),

4. Defining attributes of the classes and
the object connections,

5. Defining services of the classes and the
message connections.

The documentation contains all information
that cannot be presented in the drawing. The
drawings (also possible in some variants)
and the documentation achieve the OOA
model. The OOA model must be ``open’’
for the measurement. This is given because
the OOSE CASE tool - the ObjecTool - is
based on a

file set for the graphical models. So, the
measurement tool OOM (Papritz, 1993)
was implemented to measure the OOA
model. The evaluation of the OOA step

prove the missing inheritance documenta-
tion and the small critique that is only di-
rected to an object/class symbol. Further,
the estimation of effort, costs and quality is
not possible in this development phase (a
general problem in the OOSE). The OOD
step ensures a full cintinuity to the OOA
step. The development phases in OOD are
1. Designing the problem domain

component (to achieve further
requirements and special aspect of the
programming system),

2. Designing the human interaction
component,

3. Designing the task management
component,

4. Designing the data management
component

But, the basis model in the maintenance
phase is the OOD model. So, we do not
have a method independent specification.
We have ‘’implemented’’ 38 classes of 114
classes in the OOD model in the realization
of the software measurement laboratory in
the design phase as organizatorial orders.
So, we have the design indicators as

 class modification indicator (CMI) as
 number of organizational classes
 number of all designed classes

 attribute modification indicator (AMI)
as
 number of organzational attributes
 number of all designed attributes

 service modification indicator (SMI) as
 number of organizational services
 number of all designed services

Our project has the values for these
indicators

 CMI ≈ 0,33,
 AMI ≈ 0,48,
 SMI ≈ 0,21.

www.manaraa.com

The OOD phase does also missing the
relation to the object-oriented implementa-
tion (programming) system. So, some
browsing activities are necessary in the
OOP systerm in the OOD phase. Therefore,
we have implemented the OOC tool for
browsing in the Smalltalk class library
(/Lubahn 94/).

How can we measure the OOP system?
The development steps in the OOP phase
include
1. Implementation of ’’model“ as main

object (under the root class in the
object-otiented programming system),

2. Implementation of the concrete model,
3. Extension of the object-oriented system

with new classes/objects,
4. Extension the object-oriented system

with the new methods (as class methods
and instance methods; with class
variables and instance variables),

5. Modification of existing classes or
methods,

6. Testing of the object-oriented
application with the designed scenarios.

Here we must choose a special OOP system
or a OOP language. The ObjecTool is
developed for C++ or Smalltalk imple-
mentations. The evaluation of this phase in-

dicates that the OOP ⇒ OOD direction is
not possible here. So we introduce
maintenance problems at the beginning.
The knowledge of the existing OOP
systems or libraries is the main effort for an
efficient OOSE.

Note that the measures in this development
phase would be added by the code
measures. For the quality measurement of
the process we use the development
complexity (see /Dumke et al 94/) as set of
the used methods and tools and their
structure. Other measures (performance
etc.) have not been included in this first
approach for the development complexity
evaluation. The measurement tools were
implemented in the same method and
programming language to reduce this
development complexity. We have
implemented a C++ measurement tool
(/Kuhrau 94/) in C++ and a Smalltalk
measurement extension (/Heckendorf 95/).
We implemented 36 classes (as metrics
definitions) of the 116 classes in the OOD
model that incudes the metrics set. So, we
have as implementation indicators

 class implementation indicator (CII) as
 number of new implemented classes
 number of designed classes

attribute implementation indicator (AII)
as
 number of new implemented attributes
 number of designed attributes

 service implementation indicator (SII) as
 number of new implemented services
 number of designed services

These indictaors for our project give the
values

CII ≈ 0,31,
AII ≈ 0,51,
SII ≈ 0,22.

The given description of the process
measurement is a good example for the
method understanding. We can see the
essential approach to analyse measurement

www.manaraa.com

in the direction of the µ, m, and M measure
mutation.
Some missing tools for the completion of
an measurable OOSE method on this basis
was designed and implemented.
2.3. The Product Measurement

The defined measures for the problem
defintion (as html document set) are
• length of the document title (σµ1),
• average length of all headlines (σµ2),
• length of the document in Bytes (σµ3),
• count of words in the document (σµ4),
• average length of words (σµ5),
• maximal length of words (σµ6),
• number of bold or italic words (σµ7),
• number of notions, names or titles (σµ8),
• number of dates (times and events)

(σµ9),
• number of lists (UL, OL, DL) (σµ10),

 and the structure based measures as
• average number of words in the lists

(θµ1),
• number of HR lines (θµ2),
• average number of list elements (in UL

or OL) (θµ3),
• average number of list elements in DL

(θµ4),
• maximal number of the depth of the

lists (θµ5),
• number of hypertext relations (θµ6),
• average length of the loaded files (θµ7),
• average distance of the dates to the

actual date (θµ8).

 Further measures are the summarized
number about the whole problem defintion.
The most of these measures are ratio scaled.

 An implementation of a measurement tool
to measure the problem definition (PDM)
was necessary (/Foltin 95/). The
measurement values for the SMLAB were
presented with the EXCEL tool. Three
examples of the measurement value
presentation are the number of notions in

all parts of the problem defintion document
set1

Number of notions and names

0

100

200

300

400

500

600

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

a
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

b
8

b
9

b
0

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
0

d
1

d
2

d
3

d
4

d
5

d
6

the chosen measures for all

documents of the problem definition

(as an example of the limited facilities

of the EXCEL tool for the

presentation of the full details)

a
1

a
3

a
5

a
7

a
9

b
1

b
3

b
5

b
7

b
9

c
1

c
3

c
5

c
7

c
9

d
1

d
3

d
5

sm1

sm5

sm9/10

0

1

2

3

4

5

6

7

8

9

10

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAAAAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA

AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAAAAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAAAAAA
AAAA

AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA
AAAA

AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAAAAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

sm1

AAAA
AAAA

sm2

AAAA
AAAA

sm3/10000

AAAA
AAAA

sm4/1000

AAAA
AAAA

sm5

AAAA
AAAA

sm6/10

AAAA
AAAA

sm7/100

AAAA
AAAA

sm8

AAAA
AAAA

sm9/10

AAAA
AAAA

sm10/10

and the measurement values of one

document about the experiment

duration of three weeks. It is good to

see the fiew changement in the

measure period. This was the reason

to define the future measurement

activities in a monthly form. The

measures give also an overview about

the synchro-nized activities of our

team.

1
In these figures the measures σµi was
substi-tute with the names smi.

www.manaraa.com

0

1

2

3

4

5

6

7

8

2
.5

.

3
.5

.

4
.5

.

5
.5

.

8
.5

.

9
.5

.

1
0

.5
.

1
1

.5
.

1
2

.5
.

1
5

.5
.

1
6

.5
.

1
7

.5
.

1
8

.5
.

1
9

.5
.

sm1

sm2

sm3/1000

sm4/100

sm5

sm6/10

sm7/10

sm8/10

sm9

sm10

The evaluation of the product quality in
every development phase is defined as (see
also /ISO 9126/) comprehensibility, clarity
and usability for the problem statement on
the basis of the measures use frequency,
availability, size and structure. The
correlations between the empirical
measures and the indicators are

• • readability: σµ3, σµ5, σµ7, σµ8, σµ10,
θµ1, θµ2, θµ3, θµ5,

• mnemonics: σµ1, σµ2, σµ6, θµ4,

• clarity: σµ8, σµ9,

• correctness: θµ8,

• • useability: θµ6, θµ7,

• • layout: σµ7, θµ2.

The ‘’measurement’’ of the empirical
aspects was made by an expertise of the
team members as an evaluation in an order
scale from ‘’low’’ (1) to ‘’high’’ (5). The
results of the empirical evaluation are

criteria value
readability 3
mnemonics 4

clarity 3.75
correctness 4
useability 4,75

layout 4

Unfortunately, we couldn’t prove these
correlations in the measurement phase of
three weeks in a convinced manner - but
also not the opposite fact.

The measures (indicators) for the
OOA/OOD model are

• number of abstract classes (sm1),
• number of object classes (sm2),
• total number of attributes (sm3),
• total number of services (sm4),
• number of object connections (sm5),
• number of message connections (sm6),
• number of subclasses (sm7),
• number of subjects (sm8),

and the structure based measures

• average number of attributes per class
(tm1)

• average number of services (tm2),
• average number of object connections

(tm3),
• average number of message connections

(tm4)
• maximum depth of the inheritance (tm5).

The main measurement values for the OOA
model are

measure value measure value
sm1 1 sm4 63
sm2 76 tm1 2,57
sm3 195 tm2 0,83

www.manaraa.com

All measures - excluded the tm5 - are ratio
scaled.

The empirical evaluation of the OOA/OOD
model was founded on the

• • completenes,
• conformity and
• feasability

for the OOA/OOD phase on the basis of the
measures consistency, performance, size
and structure. The results of the evaluation
are

criteria value
completeness 2
conformity 2
feasability 3
consistency 3,5
performance 1

A higher granularity of the OOA/OOD
model measures is necessary to demon-
strate a correlation between the empirical
aspects and the model related measures.

In the phase of the OOP we must add the
code measures and the other charactersitics
of the chosen OO programming system.
Such measures are

• the coupling between objects (classes)
(M7),

• the lines of method code (M4),
• the method name length (M1),
• the number of method parameters (M2),
• the number of local variables (M8),
• the number of method returns (M6),
• the number of comments (M3),
• the method complexity (M5),

and some other indicators (see /Dumke et
al 94/). The measures for the first implmen-
tations as an average manner are (see
/Heckendorf 95/ and /Kuhrau 94/)

measure MPP Smalltalk
M1 9 8
M2 4 1
M3 3 1
M4 18 12
M5 5 3
M6 1 1
M7 2.8 22
M8 3.2 2.6

The empirical evaluation of the OOP
components are founded on the

• understandability,
• stability and
• effort

for the OOP phase on the basis of
measuring testability, size, structure and
reusability.
In a first approximation of the quality
assurance, we can want to hold the given
quality of the OO programming system.
So, we must look to the evaluation of the
resources.

The values in the table above satisfy this
condition.
The most of these measure based on a
ordinal scale and can be used only for a
classification of the quality.

2.4. The Resource Measurement

The essential aspect in the OOSE is the
initial measure of the chosen resources
(CASE tools, measurement tools, program-
ming environment etc.).

 measure ObjecTool OOM
 tm3 2 4
 tm4 3 0.8
words 8 14
 tm8 3 3

www.manaraa.com

 tm1 25 2.6
 tm2 1.9 1.4

‘’words’’ includes the average number of
words in a documentation part and was
added to rhe measures to evaluate the
documentation level
.
The size of a documentation of all OOA/
OOD model parts is essential for the size or
complexity of the implemented class.

The given initial quality can be proved by
the given measure values. The tabular on the
next page includes someone.

In accordance with our validation aspect we
can quantitatively evaluate the usefulness
of the chosen object-oriented programming
system. For example, we can see the
functional approach characteristics in the
Smalltalk/V for Windows or in Borland
C++ etc. and we can expect a lot of
maintenance effort.

 measure Smalltalk/V ST for Windows Objectworks Borland C++
classes 100 170 397 407
depth of the inhe-
ritance

 5 7 8 6

width of the inhe-
ritance

 69 118 82 208

average number of
class methods

 2.7 2.9 2.4 16.3

average number
instance methods

 17.2 27.7 17.7 0.46

average number of
subclasses

 1 1.3 6.8 0.74

3. Conclusions

This short paper describes only the main
ideas in our present project. This project
includes a tool-based evaluation of the
object-oriented software development for
the methodology of Coad/Yourdon. The
goal is to help to quantify the development
documents at the beginning for better
understanding the OO method and better
comparing this method with the other OO
development paradigms.

References

/Abreu et al 94/ Abreu, F.B.; Carapuca, R.:
Candidate Metrics for Object-Oriented
Software within a Taxonomy Frame-

work. Journal of Systems and Software,
26(1994), pp. 87-96

/Arora et al 95/ Arora, V.; Kalaichelvan,
K.; Goel, N.; Munikoti, R.: Measuring
High-Level Design Complexity of Real-
Time Object-Oriented Systems. Proc. of
the Annual Oregon Workshop on
Software Metrics, June 5-7, 1995, Silver
Fall, Oregon, pp. 2/2-1 - 2/2-11

/Binder 94/ Binder, R.V.: Design for
Testatbility in Object-Oriented Systems.
Comm. of the ACM, 37(1994)9, pp. 87-
101

/Cant et al 94/ Cant, S.N.; Henderson-
Sellers, B.; Jeffery, D.R.: Application of
cognitive complexity metrics to object-
oriented programs. Journal of Object-
Oriented Programming, July-August
1994, pp. 52-63

/Chidamber et al 94/ Chidamber, S.R.;
Kemerer, C.F.: A Metrics Suite for

www.manaraa.com

Object-Oriented Design. IEEE
Transations on Software Engineering,
20(1994)6, pp. 476-493

/Churcher et al 95/ Churcher, N.I.;
Shepperd, M.J.: Towards a Conceptual
Framework for Object Oriented
Software Metrics. Software Engineering
Notes, 20(1995)2, pp. 68-75

/Coad et al 93/ Coad, P,; Nicola, J.: Object-
Oriented Programming. Prentice-Hall
Inc., 1993

/Dumke et al 94/ Dumke, R.; Kuhrau, I.:
Tool-Based Quality Management in
Object-Oriented Software Development.
Proc. of the Third Symposium on
Assessment of Quality Software
Development Tools, Washington D.C.,
June 7-9, 1994, pp. 148-160

/Dvorak 94/ Dvorak, J.: Conceptual
Entropy and its Effect on Class
Hierarchy. IEEE Computer, June 1994,
pp. 59-63

/Fenton 91/ Fenton, N.: Software Metrics -
A rigorous approach. Chapman & Hall
Publ., 1991

/Foltin 95/ Foltin, E.: Implementation of a
problem definition measurement tool
PDM. Technical Report, University
Magdeburg, 1995

/Heckendorf 95/ Heckendorf, R.: Design
and Implementation of a Smalltalk
Measurement Extension. Technical
Report, University of Magdburg, 1995

/IEEE 93/ IEEE Standard for a Software
Quality Metrics Methodology. IEEE
Publisher, March 1993

/ISO9126/ ISO/IEC 9126 Standard for
Information Technology, Software
Product Evaluation - Quality Charate-
ristics and Guidelines for their Use.
Geneve 1991

/John et al 95/ John, R.; Chen, Z.; Oman,
P.: Stactic Techniques for Measuring
Code Reusability. Proc. of the Annual
Oregon Workshop on Software Metrics,
June 5-7, 1995, Silver Fall, Oregon, pp.
3/2-1 - 3/2-26

/Jones 94/ Jones, C.: Gaps in the object-
oriented paradigm. IEEE Computer,

 June 1994, pp. 90-91
/Karunanithi, S.; Bieman, J.M.: Candidate

Reuse Metrics for Object Oriented and
Ada Software. Proc. of the Firts Int.
Software Metrics Symposium, May 21-
22, Baltimore, 1993, pp. 120-28

/Kuhrau 94/ Kuhrau, I.: Design and
Implementation of a C++ Measurement
Tool. Master Thesis, University of
Magdeburg, March 1994

/Lee et al 94/ Lee, A.; Pennington, N.: The
effects of paradigm on cognitive
activities in design. Int. Journal of
Human-Computer Studies (1994)40, pp.
577-601

/Lejter et al 92/ Lejter, M.; Meyers, S.;
Reiss, S.P.: Support for Maintaining
Object-Oriented Programs. IEEE
Transactions on Software Engineering,
18(1992), pp. 1045-1052

/Li et al 95/ Li, W.; Henry, S.; Kafura, D.;
Schulman, R.: Measuring object-
oriented design. JOOP, July-August
1995, pp. 48-55

/Lorenz 93/ Lorenz, M.: Object-Oriented
Software Development. Prentice Hall
Inc., 1993

/Lubahn 94/ Lubahn, D.: The OOC tool
description. Technical Report, Univer-
sity of Magdeburg, 1994

/Ott et al 95/ Ott, L.M.; Kang, B.; Bieman,
J.M.; Mehra, B.: Developing Measures
of Class Cohesion for Object-Oriented
Sofwtare. Proc. of the Annual Oregon
Workshop on Software Metrics, June 5-
7, 1995, Silver Fall, Oregon, pp. 3/1-1 -
3/1-11

/Papritz 93/ Papritz, T.: Implementation of
an OOM tool for the OOA model
measurement. Technical Report, Univer-
sity of Magdeburg, July 1993

/Rocache 89/ Rocache, D.: Smalltalk
Measure Analysis Manual. ESPRIT
Project 1257, CRIL, Rennes, Franche,
1989

www.manaraa.com

/Szabo, R.M.; Khoshgoftaar, T.M.:
Modeling Software Quality in an Object
Oriented Software System. Proc. of the
Annual Oregon Workshop on Software
Metrics, June 5-7, 1995, Silver Fall,
Oregon, pp. 2/3-1 - 2/3-20

/Zuse 94/ Zuse, H.: Foundations of the
Validation of Object-Oriented Software
Measures. in: Dumke/Zuse: Theory and
Practice of Software Measurement.
Deutscher Universitätsverlag, Wiesba-
den, 1994, pp. 136-214

